Bringing consistency to methods of 2D material analysis

Credit: CC0 Public Domain

In materials science, the term “2D materials” refers to crystalline solids that consisted of a single layer of atoms, with arguably the most famous example being graphene — a material made of a single layer of carbon atoms. These materials are promising for a wide range of applications including in sophisticated electronics and quantum computing thanks to their unique quantum properties.

One of the most promising methods of investigating these materials, and specifically their temperature instabilities, and for investigating quantum many-body phenomena is the functional renormalization group (FRG). Yet, despite significant efforts, no systematic and comprehensive cohesion exists for different momentum space FRG implementations.

A new paper published in EPJ B and authored by Jacob Beyer, Institute for Theoretical Solid State Physics, RWTH Aachen University, Germany, alongside Jonas B. Hauck, and Lennart Klebl of the university’s Institute for Theory of Statistical Physics lays out a groundwork for achieving potential consistency across FRG methods.

To do this, the team analyzed three different independently developed FRG codes and achieved an achieved level of conformity between these implementations. They also lay out an exact procedure that can be followed by other researchers to achieve a similar analysis.

The authors of the paper point out that though a lack of cohesion in this area has not prevented the publication of relevant scientific results, however an established mutual agreement across FRG realizations will strengthen confidence in the method.

Seeing this as a first step towards a shared knowledge repository and motivated by potential application to strongly correlated states in two-dimensional materialsthe researchers substantiated the reproducibility of their calculations by scrutinizing pillar FRG results reported in the literature.

This allowed the team to verify the implementation of their method against established results for momentum space FRG calculations.

The team is currently working to combine their codes under a single, versatile “community code” with a polished, common, easy-to-use interface that will be available to all FRG researchers and for others interested in investigating many-body problems in physics .

Advocating a new paradigm for electron simulations

More information:
Jacob Beyer et al, Reference results for the momentum space functional renormalization group, The European Physical Journal B (2022). DOI: 10.1140/epjb/s10051-022-00323-y

Citation: Bringing consistency to methods of 2D material analysis (2022, August 1) retrieved 1 August 2022 from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Leave a Comment

Your email address will not be published.